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References [1 and 2] consider a theory of elasticity with spatial distribu-
tion of matter for a medium having simple structure and for a one-dimensional
medium having complex structure. In the present article the general case of
a three-dimensional medium with complex structure is examlned. The general
scheme of the one-dimensional case [2] 1s retalned; chief attention is
directed toward the specific character of the three-dimensional problem. The
original micro-model 1s a complex crystal lattice [3]. In Section 1 this
model 1s generalized to the case of a continuous distribution of matter. The
displacements of the mass centers of the unit cells and the micro-strains of
the cells are 1ntroduced as the kinematlc variables. The force varilables
are the mlcro-moments. The transition to an exact continuous representation
1s carried out, and the equations of an elastic medlum of complex structure
with spatial distribution of matter are derived. The operators correspond-
ing to the continuous theory are expressed in terms of the original micro-
parameters. It 1s shown that the well known conditions of symmetry of the
tensor of elastic constants, which are usually interpreted as the condition
of absence of initlal stresses [3 and 4], are consequences of the invariance
of the elastic energy under translation and rotation. In Sectlon 2 some
special models are examlned, and the equatlons of a medium are obtained for
the approximation of weak dispersion of matter. These equatlons contaln as a
special case the equations of linear nonsymmetric elasticity (couple-stress
theory) [5 to 7]. However, in the latter it turns out that the orders of
approximation are inconsistent in the various equations from the polnt of
view of the theory of spatial distribution.

In Section 2 the equations of a medium having complex structure are trans-
formed in the acoustlc r e into equations, one of which contalns only a
single klnematic variablzn%the displacement of the mass centers) and the
others of which are explicitly solvable for the remaining kinematic variables.
The first equation of this set coincldes in form with the equation for a
medium with simple structure, but differs from it by the presence of a time-
wise dispersion which i1s unrelated to energy dissipation. Expressions are
written for the energy density, and it is shown that it 1s possible to intro-
duce a symmetric stress tensor, as in the case of a simple structure.

1, We shall consider an unbounded complex crystal lattice 1n the harmonic
approximation [3] as the original micro-model of a medium with complex struc-
ture. A geometrically complex latice 1s a three-dimensional periodic struc-
ture with a unit cell constructed on the base vectors €, (@ =1, 2, 3).
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A theory of elasticity with spatial distribution of matter 1273

The positions of the ¥ particles with masses m, (f = 1, ..., ¥) in the
unit cell are specified by the cholce of the vectors €,. The interactions
between the particles are determined by the force constants Q2R (n — n’,

j» j) = ®** (n’ — n, j’,j), where n 1is # vector characterizing the number
of the unit cell. In an oblique coordinate system 2z* with base ¢, and a
metric tensor gap = €g4-€5 , the components of the vector : are integers.

In the absence of initilal forces, the Lagranglan of the complex lattice
has the form (the summation convention is used for repeated tensorial indices)

2L = g% maws’ (n, Nwg (0, 1) — 2 wa(r, O (n—n', §, fYwa (n's ') +
ny nn'}j

+ 2 Zw (n, ) f* (n, ) (1.1)

where wq (N, ) 1is the displacement of the Jth particle in the nth cell,
f“ (n,j) is the external force actlng on that particle.

We shall generalize the present model so as to include 1n our considera-
tions a continuous as well as a discrete periodic structure. To do this we
introduce the density p(g) which characterizes the distribution of mass
within a unit cell and the force matrix @2B(n, §, £') = PB2(—n, E’, §),
which determines the interaction. Here £* 1s a local system of coordinates
with origin at the mass center of the unit cell. The Lagranglan may then be
written in the form

2L = gw;Sp(g) wy' (1, E)wg' (n, &) dE — (1.2)

— 2 [we(n, ) O (n—n', &, §)wp (0, B') dE dE' + 2 X Jwa (n, B) (. )
n n
where, as in [1 and 2], the remote effects are assumed to be bounded, i.e.

(1.3)

O (n, E, &) 1is nonzero only in a finlte region of values of n

To make the transition to a discrete structure, we set

PO =2mdE—L) OF(n,E &)= N0 (n,j, /)8 E—E) 8¢ — &)
ii
Using the algorithm given in [1] we transform from functions of the dis-
crete argument n in Equation (1.2) to functions of a continuous varilable x.

In the (%, w) representation (*) the expression for the Lagrangian assumes

e LN 46w = g8 [§ o (8) wa (5, B wp (k, ) ddE — (1.4

— §§Swa (B ) @2 (K, &, &) wp (k, &) dledEdE + 2 §fwe (K, E) f* (k, E)dkdE
where v 1s the volume of the unit cell.

As in the case of one-dimensional structure [2], 1t 1s convenilent to

*) Here, as in [1], the functions of % and w are the Fourler transforms
of the corresponding functions of x and _t , where L & B, B beilng the cell

of the reciprocal lattice with ldentification of the polnts of opposite faces.
The dependence on the argument is not indicated explicitly.
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introduce collective cell variables in order to make the transition to the
theory of elasticity. To this end, we deflne the moment of inertia tensor
of order 8 of a cell (8 =0, 1, 2, ...)

p"""ks _ % S‘p (t) E.)‘! L. E)‘s dt for ' =(p, Es) (15)

where 8 denotes a collective tensorial index in the condensed notatlon and
the parentheses denote a scalar product.

We denote the tensor which 1s the inverse of p®* by p,,! and introduce
the two quaslidiogonal matrices

Irs = 92367'8, 11‘:‘1 = pi;lérs (1 .6)
With the aid of the well known algorithm we construct an orthonormal sys-
tem of base polynomials e%(E) = e*-As(E) with weight p(E) and with the
assoclated system of base functions € (§) = e,... (E), defined by the rela-
t1
ons (per’ es) — Irs' (en 68) — 6r8 (17)
It 18 easily shown that
e (§) = p (§) Irie® (§) (1.8)
Considering that the origin of the local system of coordinates coincides

with the mass center of the unit cell, we have for the filrst two elements of
the base

e =1 e@E) =8 e =p (), e =prEp®E (19
We now expand the functions of g and €’ which occur in Equation (1.%4)
in the base elements

wplk, §) = wsg (k) e* (8), [°(k, E) = [ (k) e, (E)
O (k, &, &) = O™ (k) & (E) 5 (E') (1.10)

Using (1.7), we may easily show that
e (k) = (e0y wg)r  f7 () = (¢ )

D7 (k) = s SO (k£ E) € (2) € (B) dE A (1.11)
In the notation of [1] and in the new variables, the Lagrangian (1.4)
takes the form ([™*%8 = ["®gah)
2L = wra | @ |45 — Cwra | O w5 + 2wy | 7 (1.12)
Taking Equation (1.9) into account, we can give a simple interpretation
to the first coeffilcients of the expansions of the functions w and [ .
It 18 easy to see that Wpg 1s the displacement of the mass center of the
unit cell, and that f%¢ 1is the mean density of the body forces. These quan-
titlies must obviously have special significance for a macroscopic description
of the medium. Because of this, we shall introduce special notations for
them, setting Ug = wgyg, ¢* = f0%. The remaining kinematic and force varia-
bles will be denoted by T, = Wgs and up* = fr* (p, g =1, 2,...).
It follows from (1.9) that the representation %,z = gz —+ Q[p,@]', is valid,
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where €gp 15 the mean straln of the unit cell and sz 1s the mean
rotation of the cell. Analogously, p*® = p®®) L mb2l where pG»  is
the mean density of the force dipoles, and m{*] 15 the mean density of
moments. The quentitles TN, and MP* for p, ¢> 1 represent micro-strains
and mlcro-moments of higher order.

We note that the number of independent base elements i1s determined by the
number of degrees of freedom of the unlt ¢ell, If the number of deprees of
freedom does not exceed twelve (in the case of discrete structure this means
that the number of particles in the cell 1s not greater than four), the base
is automatlcally limited to the first two elements, In this case the kinee-
matlc parameters are the displacement of the mass ocenter u , the mlcro=
strain ¢’, and the micro-rotation 0f, Correspondingly, the force parame=-
ters are the body-force density ¢ , the micro-moments of the force dipocles
4 , and the micro-moments m .

Let us now oconsider the conditions which are imposed on qvasﬁ(k) by the
requirements of invariance of the straln energy
1 s
@ = 5 Wra | O™ 055> (1.13)
under translation and rotation. Let the displacements corsdesponding to these
be w,* (k, ). Then for any w,, the equation & Wra + Wre*) = D (W,q)
must be satisfled, It follows from this that
Re (wpo* | O™ 0> = 0, (Wra* | O™ |wg*> = 0 (1.14)
For & translation by the vector d., the displacement W.* (k, &) ~ a8 (k)
and, therefore, w..* (k) ~ a,8,95 (k). For the rotation defined by the ten=-
BOr @y = —@xa, We have w.* (k, &) ~ a. (E* — i0*) 8(k) and, therefore,
Wre* (k) ~ gy (8, — i 8,99™) 8 (K), 0* = 0*/ Ok,
From the firet condition of {(1.14), we find for the came of translation
(Doaasa — (DosBoa =0 ('1 .15)
Here and in what follows ¢, denotes the value of ¢ for X = O, The
same condition gives for the case of rotation
(ngalsa - ia[)«mga]s{% (1 '16)
We now take account of the fact that, by virtue of the conditions
®B(n, E, £') = DB (—p, £, 1) the tensor (D74%5 (f) 1is Hermitian, i.e.
O™ (k) = D7 (k) = O (k) = O (— k) (1.17)
where the cross denotes the transposed conjugate with reaspect to the indices
ra and 8g ., It then follows from (1.15) and (1.16) that

I'D* = 0 (1.18)
Thus, the followlng representation for the matrix ¢ is valid:
” k;\kp"rlap'ﬂ (k) ! iklx-blaq,’a (%) [:
AR -G N R

O (k) = A DT TAT T
( ) ]\ o i/‘.ihxpa;h;s (/t);: szq}, (/i) . (1 .19)
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where y (k) = " (k), x (k), ' (k) = T* (k) are entire functions which are
determined uniquely by the specification of the original matrix o(x) . It
followe then from (1.16) that

X(’;)m.[y._',] 77 Fga[pﬂ'&] — 0 (1.20)

Turning to the second conditlon of (1.,14), we note that the direct sub-
stitution of w,,* 1in this expression 1s not possible. This 1s related to
the fect that the funetionel M (w,,), eiven in Equation (1.13) is, in general,
undefined for displacements which do not vanish at infinity in the x-space,.
It 1s, therefore, expedlent in the present case to Introduce a strain energy
density which must be invarlant under translatlion and rotation. It follows
from the form of the function w,,* (k) thet the requirements of invarience
impose conditions only on vyo, o 8nd Ty and it is, therefore, sufficlent
to restrict our consideration to the energy density 1n the zeroth approxima=-
tion in % , i.e, to the energy density for & homogeneous deformation., Taking
Equation (1,19) into account, we can represent the zeroth approximation for
the density of the Lagrangian in the form (1-21}

29, (z) = ahua(z)TéapﬁapuB(x)-+-2npa(x)x§a”569ug(x)-y/npl(x)pgaqanﬂ(x)
which 1g already invariant under translation. The correct energy density
0o (x) differs from e  (x) by divergent terms which must be chosen from the
condition of the invariance of o (x) under rotation, It is easy to show
that the most general divergent part which 1s 1lnveriant under translation

has the form ’

P (Z) — @y’ (7) = 3 [uq (2) BP0, ug (2)] (1.22)
where b8 = —prarf 45 5 constant tensor, It 1s necessary and suffici-
ent for the invariance of o (x) under rotation to require that

Aapp B A A

[6"%7 4 B** g™ - %P gy = O (1.23)

It oan be shown that the condition of solvability of Equation (1.23) is
{af, Aul = [Ap,0f] (1.24)

where AoppB rap.B Bha Aaps

[2B, Ap] = 70" 4 (%™ + %5~ + To™ Jow (1.25)

The solution of (1.23) is unique under the condition (1.24) and has the
Form D = (20 — P — A (1.26)

In the case of a discrete structure, Equation (1.24) coincides with Huang's
ocondition on the force constants, which in [3 and 4] 1a interpreted as the
ocondition of absence of initial stresses. From the considerations given in
[1] and in the present article, it follows that this condition ie not rela-
ted to initial stresses but is a consequence of the invariance of the energy
density under rotation.

The condition of invariance of the energy under rotation can be Interpre-
ted heuristically if the macroscopic rotation S}wa = Ow_uB] is introduced
along with the micro-rotation SEpB'. Then it is easy to show that the con-
dition obtained above 18 equivalent to the requirement that the energy
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density in the zeroth approximation depend only on the difference 0 — (',
Taking account of (1.19), the equations of motion corresponding to the
Lagrangian (1.12) have the form

©*pg*Bug — Ray**e8 (k) kyug — thkax ™98 (k) = — ¢°
TP Py - ixPees (k) kyug — TP (k) ) = — po=

in the {%, w) representation, where o 1s the mean mass density in the unit
cell. In the (x, t) representation, Equations (1.27) assume the form

(1.27)

Pg*Pup” — Oy B0 ug — 0y 0Py = ¢*

pagh,, ” : pagp
17" gg + yPo+Pup + TP ngg = ppe
where ¥, X,]7 are the integral operators with kernels of difference form
which are the inverse Fourler transforms of the functions v{k)}, x{(x) and
T{x) .

(1.28)

Equations (1.28) provide an exact continuous representation of the orig-
inal model. The operators ¥, x,ﬁF are expressible explicitly in terms of
the microscopi¢ force constants. From the phenomenclogical point of view,
these equations describe the most general model of a macroscopliecally homo-
geneous, linearly elastic medium of complex structure wilth a spatial distri-
bution of matter (*).

Just a8 in the one-dimensional casge [2], the model under consideration
can be described equivalently in terms of a single kinematic variable w, {x)
and a single force variable f* (z). Here the equations of motlon in both the
{k, w) and (x, t) representations have the form of integral equations with
kernels of difference type. The equations which establish the one-~to-one
correspondence between this description and the one considered above are
obtalned by the obvious generalization of the corresponding equations for
the one-dimensional case, and are, therefore, not given here.

2. Let us consider some special cases. If the unit cell has a center of
symmetry, then certain conditions are imposed on the force constants. In
matrix notation these conditions coinclde with the corresponding conditions
obtained for the one-dimensicnal model [2]. Likewise, 1t is easy to gener-'
allze to the three-dlmenslonal case the necessary and sufficient conditions
given in [2] for which the equations of & medium with complex structure admilt
a transformation to the equations of & medium with simple structure [1].

In the general case, qﬁ“sﬁ(k) does not possess symmetry with respect to
af . However, if this symmetry is present, it can be given a simple inter-
pretation in terms of paired interaction. We term an interaction in a dis-
crete model paired if the potential energy can be represented in the form of
a sum, each term of whlch depends only on the relative displacements of two
particles. The generalization of this definition to the case of a continuous
model 1s obvious. It 1s shown in [10] that in the harmonic approximation the
most general form of interaction in a crystal lattice 1s a triple interaction.
It cdn be proved that the symmetry of *° (g, &, £') with respect to a8 , and,
therefore, of qﬂ“sﬁ(k% as well, is a necessary and sufficient condition for
the interactions to be paired. It follows from this that in the one-dimen-
sional model the interaction is always paired. In three~dimensional models

*) We remark that a medium of complex structure was considered from another
point of view in [7 to 9].
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with simple structure, invariance under inversion is usually assumed, and
ghe symmgtry of *(n) with respect ta qB follows, i.e. the interaction
s paired.

We note the interesting case in which the medium has a structure such that
for a homogeneous siatic strain, external forces acting on each particle are
absent (this happens, e.g. if each particle is at a center of symmetry). In
this case we find a necessary and sufficient condition on the elastic con-
stants from Equations (1.27)

XBPIWB) + pom(zhﬁ) =D 2.4
Together with (1.20) this means that
xop'z;x{—i _}_ }wgap{«) —Q (22)

Let us now consider a model of a medlum with weak distribution of matter.
To do this, we expand the functions y(x), x(%¥) and TI'(k) whichappear in
(1.27) in the series in & in the neighborhood of the point % = 0 and
restrict ourselves to a finite number of terms. Por &% = O we have the
zeroth approximation. To go on to further approximations it is useful to
distingulsh between two cases., For a gyrotrople medium, the next approxima-
tion is the first, and the operators in (1.28) have the form (2.3

A, Axpd AapfBv LB 7. 30 3
Y =, 1 vy xpap( — Xoplwﬁ + leva.Jav’ el popaQB 4 plpanvav

If the medium 18 not gyrotroplc, the next approximation after the zeroth
is the second, and

TR:;).,’% — TOAap.S + Y;‘“E"S“f 5‘,‘31* Xpagx{% — Xo'potp.a - xzpap,svravar
rPaad FOPGQS 4 szaflﬂ\'?av&: (2.4

The subscripts 1 and 2 in (2.;) and (2.4) denote the coefficients in
%he eTpanaions of the functions vy(x), x(k) and T(x) in series of powers of
—tk) .
In the particular case of an 1isotropic medium with the kinematic variables
u and 0N’ (a Cosserat continuum), Equations (1.28) in the second approxima-
tion are written in the form

pu— (&g -+ @28) Au — By + BoA) grad div u + 2 (xo + 124) rot @' = ¢
1Q7 4 (xo + Yad) Tot u — 2 (o — %,4) Q" =m (2.5)

where the constants ap, @s,... 8re related in an obvious fashion to the
coefficients of the operators of (2.4) in the isctropic case.

The equations of a medium with a weak distribution of matter contain as
a8 speclal case the equations of the linear nonsymmetric (couple-stress) the-
ory of elasticity [5 to 7]. Thus, for example, in order to obtain the equa~
tions of [7] it 1s necessary to consider a model in which the kinematic varil-
ables are y, ¢’ and (1’; to limit oneself to the zeroth approximation in
all variables in the first equation of the system {1.28); dut to take in the
second equation the zeroth approximation for uy and the second approximation
for ¢’ and Q’. Such an inconsistency in the approximations cannot, of
course, be justified within the framework of a theory of elasticity of a
medium with spatial distribution of matter. In [5 and 6] a Cosserat conti-~
nuum 1s considered with an analogous inconsistency in the orders of approxi-
mation in the first and second equatilons.

3. As was pointed out in [2], in a macroscopic descriptlion of a medium
with microstructure, the acoustic region of vibrations, in which the displace-
ment of the mass center is the fundamental kinematic varlable, is of greatest
interest. The special role of this variable is related to the circumstance
that in the admissible acoustic region the system of equations (1.27) can be
equivalently transformed into one equation containing only the single varia-
ble y and other equations which explicitly express the remaining kinematic
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variables n in terms of u . In matrix notation Equations (1.27) coincide
with the corresponding equations for the one-dimenslional case, and, there-
fore, the general scheme of transformation of the equations ls retained for
the three-dimensional case. This permits giving the final results without
dwelling on the detalls.

We introduce the matrix
A (b, 0) = |T (&) — | = A" (k, @) (3.1)
As was done in [2] it is possible to show that A(k, w) exlsts in some
finite part of the acoustic reglon containing the origin of coordinates (the
admissible acoustic region), and can be explicitly expressed in terms of the

coefficients of the expansion of T'(k) in a series in k , With the aid of
the matrix 4(%, w), the system {1.27) 1s transformed into

@%pg*Pug — PrEre (k, o) kakuup = — Q° (3.2)
MNpa = ia;tﬂ (k, ©) kuup + Apaga (k, ) pab (3.3)

where
P (k, ©) = AP (k) — [P (k) Apvg: (k2 ©) 378 ()]
Gtk 0)= A, (k o)y Ek) (3.4)

Q% = ¢* + ikypre, pre = — g™ g (k, o) peP
Equation (3.2) coincides in form with the equation of motion of an elastic
medium with simple structure [1]. However, in the present case ‘paBRP
depends not only on k but also on w , 1.e. in addition to the spatlal
distribution there exists a timewlse dispersion which is obviously unrelated
to any disslpation of energy. It 1s easy to show that for small k& and w
the dispersion appears beginning with the second approximation.

The right-hand side of (3.2) contains the equivalent density of external
forces Ql, which is equal to the mean denslity of the external forces g%
minus the dlvergence of the density of the micro-moments plﬁ, as in the
ordinary macroscopic theory.

By an argument simllar to that used in [1], it 3s possible to obtain an
expression for the straln energy density and to define a symmetric stress
tensor. To this end, we introduce the tensor (8 is the symmetrization oper=~

ator defined in [1]) b (k, @) = SPe’e (k, 0) (3.5)

which 1s symmetric in the first palr of scripts, and we denote the elastic
distortion by o
gl“ (.21) = Oxlq (x) = Exa (x) + Qe (.‘E)

The strain energy density can be expressed in the form

P (z) = 1/26* (2) £ra () (3.6)

where the symmetric tensor 6’ can be interpreted as the stress tensor (*).

*) At the same time 1t does not appear advisable to introduce directly into
Equations (1.28) a choilce (generally an arbitrary one) of couple-stress ten-
sors, since they are not well defined pgysical quantities. This follows
from the analysis of the original microscopic model.
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In the (%, w) representation
gt (k) = cr**8 (k, @) §yp (k) (3.7)
In order that (3.6) be invariant under rotation, 1t ts necessary and suf=

ficient to require that 8 A
Yo = pptef (3.8)

Straightforward computation shows that {3.8) coincides with the condition
{(1.24). The relation (3.7) is the generalized Hooke's law. In the {x, t)
representation, Hooke's law is written in the obvious operator form and the
equations of motion assume the usual form

dive = pu” — Q (3.9)

In the case of weak distribution and in the zeroth approximation with
respect to k¥ and w , Equatlons {3.2) are transformed into the equations
of the classical theory of elasticity, and M€ = crerf (0, 0) coincides with
the ordinary tensor of the elastic constants which are measured in macro-
experiments., The relation between the ¢ *@4# and the microscopic force con=
stants can be found from (3.4) and (3.5)

CooBB == SipyEhre (3.10)

It is easy to show that {3.10) coincides with the corresponding formula
given in [3]. It 1s interesting to note that (3.10) 1is considerably simpli-

fied if the condition (2.1) is satlsfled, since in that case it 15 necessary
to carry out the inversion of the matrix I}paqa. Equation {3.10) then takes

the form co*e#d = § [of, Al (3.11)

in proceeding to the succeeding approximatlions in Equation (3.2), it 1s
advisable, as before, to distingulsh between the cases of gyrotroplc and non-
gyrotroplc media in Equation (3.2). Here 1t should be noted that the pro-
perty of gyrotropy in the sense indicated 1s not invariant under the trans-
formation of the equations which has been carrled out above. Thus, for
instance, if the condition {2.1) is satisfiled and the interactions are paired,
then the medium described by Equations (1.27) is, generally speaklng, gyro-
tropic. However, i1t can be shown that upon transforming to Equation (3.2),
the first approximation coincides with the zeroth, and only in Equations
{3.3) does non-gyrotropy make its appearance.

In the general case of a gyrotroplc medium, the operator ¢ 1in the first

approximation has the form
ChaBb = chakd | o MBTG, (3.12)

and correspondingly, for a non~gyrotropic medium in the second approximation

(o= 2/20) A8 = R - MY 0y - oy NEBD (3.13)
For an isotropic medium in the general case of strong distributlon

=8 (k, @) = A (k, ©) 687 -+ p (k, 0) (7% + 8°6%)  (3.14)

where A and p are even analytic functions of k% and w . The evenness

with respect to @ 1s obvious, and evenness with respect to & follows from
the fact that there exist no isotropic tensors of odd order.
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Equations (3.2) may be written in the following form in the {x, t) repre-
sentation for the second approximation:

Ju" — (o 4 poA) Au — (Ao 4o + (A2 + j2}Al grad divu = Q  (3.15)
Here the quantity
J =p —py’A — (A + py’) graddiv (3.16)

as the operator giving the effectlve inertia of the medium. Equation (3.15)
agrees with the corresponding equation of [7]. In the static case, (3.15)
coincides with the equation of equilibrium for a medium of simple structure
and, therefore, the static Green's tensor, as given, e.g. in [1], may be used
for its solutilon.

The authors are grateful to G.I. Barenblatt, A.I. Lur'e, V.A. Pal'mov,
Iu.N. Rabotnov and L.I. Sedov for helpful discussions.
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