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References [l and 21 consider a theory of elasticity with spatial distribu- 
tion of matter for a medium having simple structure and for a one-dimensional 
medium having complex structure. In the present arttile the general case of 
a three-dimensional medium with complex structure Is examined. The general 
scheme of the one-dimensional case [2] is retained; chief attention is 
directed toward the specific character of the three-dimensional problem. The 
original micro-model Is a complex crystal lattice [3]. In Section 1 this 
model is generalized to the case of a continuous distribution of matter. The 
displacements of the mass centers of the unit cells and the micro-strains of 
the cells are introduced as the kinematic variables. The force variables 
are the micro-moments. The transition to an exact continuous representation 
Is carried out, and the equations of an elastic medium of complex structure 
with spatial distribution of matter are derived. The operators correspond- 
ing to the continuous theory are expressed in terms of the original micro- 
parameters. It is shown that the well known conditions of symmetry of the 
tensor of elastic constants, which are usually interpreted as the condition 
of absence of Snltlal stresses 13 and 41, are consequences of the Invariance 
of the elastic energy under translation and rotation. In Section 2 some 
special models are examined, and the equations of a medium are obtained for 
the approximation of weak dispersion of matter. These equations contain as a 
special case the equations of llnear nonsymmetric elastlclty (couple-stress 
theory) [5 to 73. However, In the latter it turns out that the orders of 
approxlmatton are Inconsistent In the various equations from the point of 
view of the theory of spatial dlstrlbution. 

In Section 3 the equations of a medium having complex structure are trans- 
formed In the acoustic r e Into equations, one of which contains only a 
single kinematic variable Y the displacement of the mass centers) and the 
others of which are explicitly solvable for the remaining kinematic variables. 
The first equation of this set coincides In form with the equation for a 
medium with simple structure, but differs from it by the presence of a tlme- 
wise dispersion which Is unrelated to energy dissipation. Expressions are 
written for the energy density, and it Is shown that It Is possible to intro- 
duce a symmetric stress tensor, as In the case of a simple structure. 

1. We shall consider an unbounded complex crystal lattice In the harmonic 

approximation [3] as the original micro-model of a medium with complex struc- 

ture. A geometrically complex latlce Is a three-dimensional periodic struc- 

ture with a unit cell constructed on the base vectors e, (a = 1, 2, 3). 
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The positions of the N particles with masses in3 (j I 1, . . . . N) In the 

unit cell are specified by the choice of the vectors sI. The Interactions 

between the partlcle$ are determined by the force constants (-Pa (72 - Iz', 

j, j') = @Pa (n' - Iz, j', j), where n Is 8 vector characterizing the number 

of the unit cell. In an oblique coordinate system X" with base e, and a 

metric tensor g,p = ea.e6 , the components of the vector : are Integers. 

In the absence of initial forces, the Lagranglan of the complex lattice 

has the form (the summation convention isused for repeated tensorlal Indices) 

2L = g”fix ??ZjWa' (n7 j)Wfi’ (n, i) - 2 wa (n, j) dYB (n - n’, i, i’)q WY i’) + 
ni nn’j j’ 

+ 2p,(? i)f”(n, i) W) 

where Wo: (n, i) is the displacement of the jth particle In the nth cell, 

f" (n,i) Is the external force acting on that particle. 

We shall generalize the present model so as to Include In our consldera- 

tions a continuous as well as a discrete periodic structure. To do this we 

introduce the density p(5) which characterizes the distribution of mass 

within a unit cell and the force ma;;;: g@a6(n, E, E') = @a(.-n, E', E), 

which determines the interaction. a Is a local system of coordinates 

with origin at the mass center of the unit cell. The Lagranglan may then be 

written in the form 

2L = g”a x J p (E) w,’ (% E) q3’ (n, E) 4 - (1.2) 
n 

-pw&l, E)cP”qn-n’, E, %‘)W@(d, %‘)d%d%‘+ 2p&%v7n9E)d% 

where, as in [l and 23, the remote effects are assumed to be bounded, I.e. 

@as (n, E, E') Is nonzero only in a finite region of values of n . 
(4 -3) 

To make the transition to a discrete structure, we set 

P (E) = T 4 (% - Ed7 CD”(n, %, E’) = xW’(n, j, j’) 6 (E-%j) B(%‘-%j’) 
ji’ 

Using the algorithm given in [l] we transform from functions of the dls- 

Crete argument n in Equation (1.2) to functions of a continuous variable n. 

In the (k, UJ) representation (*) the expression for the Lagranglan assumes 

the form 
16n3vL = w2g@ ss p (E) wa (k E) W/J (k %)dkd% - 

- JSJ w, (k, %) WB (k, %, %‘) wB (k, %‘) dkd% a%’ + 2 jbiz (k, %) f” (k, %) dkd% 

(1.4) 

where u Is the volume of the unit cell. 

As In the case of one-dimensional structure [2], It is convenient to 

*) Here, as In Cl], the functions of k and UJ are the Fourier transforms 
of the corresponding functions of x and t where kE B, B being the cell 
of the reciprocal lattice with identiflcatlon'of the points of opposlte faces. 
The dependence on the argument Is not Indicated explicitly. 
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Introduce collective cell varlableP In order to make the transition to the 

theory of elasticity. To this end, we define the moment of inertia tensor 

of order 8 of a cell (8 = 0, 1, 2, . ..) 

P 
l,...)i S = +- Sp(E;)E”’ . . .psag for p” = (p, 6”) (1.5) 

where 8 denotes a collective tensorlal Index In the condensed notation and 

the parentheses denote a scalar product. 

We denote the tensor which Is the Inverse of p2' by pz;l and Introduce 

the two quasldlogonal matrices 

I'" = P286'sY I,’ = pz;‘6,, (I .6) 

With the aid of the well known algorithm we construct an orthonormal sys- 

tem of base polynomials e'(E) s &l...%(E) with weight p(k) and with the 

associated system of base functions e, (E) = e,,..+JE), defined by the rela- 

tions 
(per, es) = I", (e,, es) = 6," (1.7) 

It Is easily shown that 

er (U = p (E) Ge' (U (1.8) 

Considering that the origin of the local system of coordinates coincides 

with the mass center of the unit cell, we have for the first two elements of 

the base 

15' (E) = 1, ea (E) = Ea; eo (E) = po-‘p (E), ep (E) = p;i Ea p(E) (1.9) 
We now expand the functions of 5 &d 5' which occur In Equation (1.4) 

In the base elements 

wti(k, E) == w,g(k)e*(Q, f"(k, E) = f'",(k)e,(g) 

@@(k, E, E') =; @r"sB(k)e,(E)e, (E') 

usm3 (1.71, we may easily show that 

WSP@) = (es9 ~6)~ f'"(k) = (ert f") 

@as8(h) = -$ ls 0"" (k, E, E')er(Q es(E’)dg dt’ 

(1.10) 

(1.11) 

In the notation of Cl] and In the new variables, the Lagranglan (1.4) 

takes the form (Iraea = Irsgab) 

2L = (w,, ( dFP 1 Ws$) - (zu,,I a+=@ 1 wg) + 2 (w,, 1 f’“) (1.12) 

Taking Equation (1.9) Into account, we can give a simple Interpretation 

to the flrst coefficients of the expansions of the functions w and f . 

It is easy to see that woe is the displacement of the mass center of the 

unit cell, and that f”a Is the mean density of the body forces. These quan- 

tities must obviously have special significance for a macroscopic description 

of the medium. Because of this, we shall introduce special notations for 

them, setting Ug = Was, qa = foa. The remaining kinematic and force varla- 
bles will be denoted by ?I48 = W,B and PP" = fP" (p, q = 1, 2, . . .). 
It follows from(l.9) that the representation %j,,,b -= &t&q)' + Qri*pl', 1s valid, 
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where &(g~ Is the mean strain of' the unit cell and %4 is the mean 

rotation of the cell. Analogously, paa = pfhz) -t- m[~al, 

the mean density of the force dipoles, and mf‘nal is the rn~~f?aer$~~ ofis 

moments. The quantities rQ$ and pPa for p, qs 1 represent micra-strains 

and micro-moments of higher order. 

We note that the number of independent base elements is determined by the 

number of degrees of freedom of the unit cell, If the number of decrees of 

freedom does not exceed twelve (in the case of discrete structure this means 

that the number of particles in the cell Is not greater than four), the bt13e 

is automatically limited to the first two elements. Tn this oase the klne- 

matic parameters are the dlsplaoement of the mass oenter u , the mioro- 

strain c(, and the micro-rotation R’, Correspondingly, the foroe parame- 
ters are the body-foroe density q f the m~oro-momenta of’ the foroe dipoles 

v , and the micro-moments m . 

Let ua now oonslder the oonditlons which are imposed on ara*3(k) by the 

requirements of invarianoe of the strain energy 

rD = $ (w,, J aprasp f Ui,g) (1 *KS) 

under tranalation and rotation. Let the diaplaoementa cortiesponding to these 

be wLI* (k, 8. Then for any E,, the equation Q (u,~ + w,.~*) = CD (w,,) 
must be satisfied. It follows from thla that 

Re (w,,* ] Was8 1 w,$) = 0, (w,,* p?~"r~]W,8*) = 0 (1.14) 

For a translation by the veator aa , the dl8pla~ement Wu,* (k, E) - u=~~(~) 

and, therefore, w,,* (k) - a,8,o&(k). For the rotation definsd by the ten- 
sor auh = -aha, we have wcx* (k 5) .- aah (Eh - i@) 6(k) and, therefore, 

wrl* (k) - a,,, (drh - i 8,oa”) 6 (k), da = aa/ akh 

From the firat oondltlon of (1.14), we find for the oaae of translation 

Here and in what follows 
aama aonditlon glvea for the 

qp@ = @$poa = 0 (1.15) 

C denotes the value of’ 6 for k m 0 , The 

ease of rotation 

@aa I s3 =I;: iaP@als.~ (1.16) 

We now take account of the faot that, by virtue of the oonditlons 

at”+, E, E’) = Wq-n, E’, E) the tensor W’bsfJ (k) la Hermitian, 1.8. 

(1.17) 

where the or088 denote8 the transposed oonjugate with reapeot to the lndloea 
ro. and sg . It then followa from (1.15) and (1.16) that 

Thus, the following repreeentatlon for the matrix d! is valid: 

(1.19) 
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where y (k) = y’ (A), X (/i), 1‘ (Ii) ~~ I’+ (k) are entire functions which are 

determined uniquely by the specification of the original matrix 50(k) . It 
fOllS~V!2 then from (1.16) ‘chat 

IJ’Tk. I 
X0 

1‘1’“1!“” = (1 -* (1 .‘O) 

Turning: to the oecond condltlon of (1.14)) we note that the direct sub- 

stltutlon of W,CI * In this expression Is not possible. This Is related to 

the fact that the functional (f)(wl.,), given ln Equation (1.13) is, In general, 

undefined for displacements which do not vanish at infinity in the x-space. 

It Is, therefore, expedient in the present case to introduce a strain energy 

density which must be Invariant under translation and rotation. It follows 

from the form of the function w,, * (k) that the requirements of Invariance 

lmpose conditions only on ye, x0 and TO and it is, therefore, sufficient 

to restrict our consideration to the energy density In the zeroth approxlma- 

tlon in k , 1,e. to the energy density for a homogeneous deformation. Taking 

Equation (1,19) Into account, we can represent the zeroth approximation for 

the density of the Lagranglan in the form (1.21) 

2% (5) = &I% (x) da”“&% (5) + 27pa (2) pp dp.Up (5) + qpz (5) rpqap (r) 

whlah Is already Invariant under translation. The correct energy density 

~(3) differs from e’(x) by divergent terms which must be chosen from the 

condition of the invariance of Q,(X) under rotation. It Is easy to show 

that the most general divergent part which is invariant under translation 

has the form 
%I (5) - (PO’ (x) = da [U, (5) b”“‘LBdPUQ (z)] (1.22) 

where bAai+ = -br.W Is a constant tensor. It is necessary and sufficl- 

ent for the Invariance of e(x) under rotation to require that 

[b aaL@ + jph= + T;wB + X!pylkp, = () (1.23) 

It oan be shown that the oondltlon of solvability of Equation (1.23) is 

Iq% ApI = [hp,cq31 (1.24) 

where 
(1.23) 

The solution of (1.23) Is unique under the condition (1.24) and has the 

form 2b”“‘“” = [2,#1”” _ ,;I”@ _ x;WB + @‘.p]Lhp, (1.26) 

In the aase of a dleorete struuture, Equation (1.24) coincides wlthHua.ng’s 

oondltlon on the foroe oonetants, which In [3 and 43 Is Interpreted as the 
oonditlon of abeenoe of Initial stresses. Prom the considerations given In 

[l] and ln the present article, It follows that this condition ia not rela- 

ted to Initial stresses but Is a consequence of the Invariance of the energy 

density under rotation. 

The oondltlon of Invariance of the energy under rotation can be lnterpre- 

ted heuristlaally If the macroscopic rotation $&,P = dlP UQI Is Introduced 

along with the micro-rotation Qpe . Then It is easy to show that the COW 

dltion obtained above Is equivalent to the requirement that the energy 
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density in the zeroth approximation depend only on the difference Cl - CZ'. 

Taking account of (1.19), the equations of motion corresponding to the 

Lagrangian (1.12) have the form 

@)g”@up, - khrhal*P (k) kpup - ikhX+ia@ (k) qpp = - QQ 

~~~~~~~~~~ + ipa@ (k) kpuB - lYpaqt9 (k) qql, -_ - FP= 
(1.2’7) 

in the (k, UJ) representation, where p is the mean mass density in the unit 

cell. In the (x, t) representation, Equations (1.27) assume the form 

pgw,lg” - d)&p+~dpUQ - d~~+~a”~q@ zcz q” 

JP”QBy4j + XPw+J,Q + rpa*%jqp = f&P” 
(1.28) 

where YY XI r‘ are the Integral operators with kernels of difference form 

which are the inverse Fourier transforms of the functions v(h), x(k) and 

r(k) . 

Equations (1.28) provide an exact continuous representation of the orlg- 

lnal model. The operators Yt XV r are expressible explicitly In terms of 

the microscop force constants. From the phenomenologlcal point of view, 

these equations describe the most general model of a macroscopically homo- 

geneous, linearly elastic medium of complex structure with a spatial distri- 

bution of matter (*). 

Just as in the one-dimensional case [2), the model under consideration 

can be described equivalently in terms of a single kinematic variable W,(X) 

and a single force variable I" (x). Here the equations of motion in both the 

(k, UJ) and (x, t) representations have the form of integral equations with 

kernels of difference type. The equations which establish the one-to-one 

correspondence between this description and the one consfdered above are 

obtained by the obvious generalization of the corresponding equations for 

the one-dimensional case, and are, therefore, not given here. 

2. Let us consider some special cases. If the unit cell has a center of 
symmetry, then certain conditions are imposed on the force constants. In 
matrix notation these conditions coincide with the corresponding conditions 
obtained for the one-dimensional model [2]. Likewise, it Is easy to gener-* 
allze to the three-dimensional case the necessary and sufficient conditions 
given In [2] for which the equations of a medium with complex structure admit 
a transformation to the equations of a medium with simple structure [I]. 

In the general case, ~~as~~~) does not possess symmetry with respect to 
a8 . However, if this symmetry is present, it can be given a simple inter- 
pretation in terms of paired Interaction. We term an Interaction in a dls- 
Crete model paired if the potential energy can be represented In the form of 
a sum, each term of which depends only on the relative displacements of two 
particles. The generalization of this definition to the case of a continuous 
model is obvious. It is shown in [lo] that in the harmonic approximation the 
most general form of interaction in a crystal lattice is a triple interaction. 
It cctn be proved that the s~etry of q@‘(n,E,$') with respect to aB , and, 
therefore, of @a@(k), a5 well, is a necessary and sufficient condition for 
the interactions to be paired. It follows from this that in the one-dimen- 
sional model the Interaction is always paired. In three-dimensional models 

*) We remark that a medium of complex structure was considered from another 
point of view in [7 to 93. 
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with simple structure, Invariance under inversion Is usually assumed, and 
the symmetry of tJ)X"(rL) with respect ta a8 follows, i.e. the interaction 
Is paired. 

We note the Interesting case in which the medium has a structure such that 
for a homogeneous si;atic strain, 
absent (this happens, e.g. 

external forces acting on each particle are 
if each particle Is at a center of symmetry). In 

this case we find a necessary and sufSlclent condition on the elastic con- 
stants from Equations (1.27) 

x PWlJ.8) _i_ r W(!Jm ~_ 0 
n ’ 0 (2.13 

Together with (1.20) this means that 

XOPz:lP _I_ rrlljJ _ 0 (2.'2) 

Let us now consider a model of a medium with weak distribution of matter. 
To do this,' we expand the functions y(k), X(k) and T(k) whlchappear in 
(1.27) In the series In k in the neighborhood of the point k - 0 and 
restrict ourselves to a finite number of terms. For k - 0 we have the 
zeroth approximation. To go on to further approximations it is useful to 
distinguish between two cases. For a gyrotro lc medium, the next approxima- 
tion is the first, and the operators in (1.28 P have the form 12.3) 

T 
hX!l.y _.- roJ.~iJ.? _i.r,wBY& xPv,P = xoP+a _+ xlPTJ.Y~~a”, rPq3 = ropaq9 _+ rlpaqaVay 

If the medium is not gyrotroplc, the next approximation after the zeroth 
is the second, and 

+r 
)i"l"? _ __ $& + ~~aa~.~q~~"~~, xP%q = &PVB + ~~Pa~~v~~“~~ 

pw8 _ &Pan@ + r$?wPvq a 
Y 5 (2.4) 

The subscripts 1 and 2 In (2. ) and (2.4) denote the coefficients In 
the expansions of the functions 
(- tk)’ . 

y(k , X(k) and I’(k) In series of powers of 3 

In the particular case of an Isotropic medium with the kinematic variables 
u and n' (8 Cosserat continue), Equations (1.28) in the second approxlma- 
tion are written In the form 

pu”- (a,, + a,A) Au - (PO f &A) grad div u + 2 (x0 + x?A) rot Q' = q 

151” -+- (x0 + xzA) rot u - 2 (x0 - xzA) 52’ = m (2.5) 

where the constants 00, aa,... are related in an obvious fashion to the 
coefficients of the operators of (2.4) In the isotropic case. 

The equations of a medium with a weak distribution of matter contain as 
a special case the equations of the linear nonsynnnetrlc (couple-stress) the- 
ory of elasticity C5 to 71. Thus, for example, In order to obtain the equa- 
tions of [7] It Is necessary to consider a model In which the kinematic varl- 
able8 are u, E' and Cl'; to limit oneself to the zeroth approximation In 
all variables in the first equation OS the system (1.28); but to take in the 
second equation the zeroth approximation for u 
for c* and n’. 

and the second approximation 
Such an inconsistency in the approximations cannot, of 

course, be justified within the framework of 8 theory of elasticity of a 
medium with spatial distribution of matter. In [5 and 6) a Cosserat contl- 
nuum la considered with an analogous Inconsistency in the orders of approxl- 
matlon In the first and second equations. 

3. As was pointed out In 123, In a macroscopic description of a medium 

with microstructure, the acoustic region of vibrations, in which the displace- 

ment of the mass center 1s the fundamental kinematic variable, is of greatest 

Interest. The special role of this variable is related to the circumstance 

that In the 8dmlsslble acoustic region the system of equations (1.27) c8n be 

equivalently transformed Into one equation containing only the single varla- 

ble u and other equations which expZicltly express the remaining kinematic 
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variables n in terms of t4 . In matrix notation Equations (1.27) coincide 

t;ith the corresponding equations for the one-dimensional case, and, there- 

fore, the general scheme of transformation of the equations Is retained for 

the three-dimensional case. This permits giving the final results without 

dwelling on the detalls. 

We Introduce the matrix 

A@,@) =/jUlc) - o~V/j-~ = A+ (k, w) (3.4) 
As was done in (23 it is possible to show that A(k, UI) exists in some 

finite part of the acoustic region containing the origin of coordinates (the 

admissible acoustic region), and can be explicitly expressed in terms of the 

coefficients of the expansion of I'+(k) in a series in k . With the aid of 

the matrix A(k, w), the system (1.27) is transformed into 

~2pg%e-$d@X~(k, o) khkpuB = -Q” (3.2) 

rl pa = iu;,fl (k, o) kpuB + ApapB (k, co) pqS (3.3) 
where 

(34 

Equation (3.2) coincides In form wlth the equation of motion of an elastic 

medium with simple structure [l]. However, in the present case $a@&~ 

depends not only on k but also on w , i.e. in addition to the spatial 

distribution there exists a timewise dispersion which is obv%ously unrelated 

to any dissipation of energy. It is easy to show that for small k and w 

the dispersion appears beginning with the second approximation. 

The right-hand side of (3.2) contains the equivalent density of external 

forces Qs, which Is equal to the mean density of the external forces @ 

minus the divergence of the density of the micro-moments p&a, as in the 

ordinary macroscopic theory. 

By an argument similar to that used in Cl], it 1s possible to obtain an 

expression for the strain energy density and to define a symmetric stress 

tensor. To this end, we introduce the tensor (S is the symmetrizatlon oper- 
ator defined in Cl]> 

cha@ (k, o) = SIJY@~* (k, o) (3.5) 
which is symmetric in the first pair of scripts, and we denote the elastic 

dlstortlon by 
CR44 = 4&(4 = Baa(Z)+ %.X(Z) 

The strain energy density can be expressed In the form 

cp(r) = l/~a~=(~)E~u(~) (3.6) 

where the symmetric tensor Gas can be interpreted as the stress tensor (*). 

*) At the same time it does not appear advisable to introduce directly intO 
Equations (1.28) a choice (generally an arbitrary one) of couple-stress ten- 
sors, since they are not well defined pgysical quantities. This follows 
from the analysis of the original microscopic model. 
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In the (k, iu) representation 

(3.7) 
In order that (3.6) be Invariant under rotation, it is necessary and suf- 

ficient to require that 
(3.8) 

Straightforward computation shows that (3.8) coincides with the condition 

(1.24). The relation (3.7) is the generalized Hooke's law. In the (x, t) 

representation, Hooke's law is written in the obvious operator form and the 

equations of motion assume the usual form 

diva =pu”- Q (3.9) 
In the case of weak distribution and in the zeroth approximation with 

respect to k and u) , Equations (3.2) are transformed into the equations 
of the classical theory of elasticity, and cOhc'@ = ~a+6 (0, 0) coincides with 

the ordinary tensor of the elastic constants which are measured in macro- 

experiments. The relation between the c,,aWa and the microscopic force con- 

stants can be found from (3.4) and (3.5) 

(3.10) 

It is easy to show that (3.10) caineides with the corresponding formula 

given in [3]. It Is interesting to note that (3.10) Is considerably simpli- 

fied If the condition (2.1) Is satisfied, since In that case it is necessary 

to carry out the Inversion of the matrix r,,raqB. Equation (3.10) then takes 

the form 
(3.11) 

In proceeding to the succeeding approximations in Equation (3.2), it is 

advisable, as before, to distinguish between the cases of gyrotroplc and non- 

gyrotroplc media in Equation (3.2). Here it should be noted that the pro- 

perty of gyrotropy in the sense indicated Is not invariant under the trans- 

formation of the equations which has been carried out above. Thus, for 

instance, if the condition (2.1) Is satisfied and the interactions are paired, 

then the medium described by Equations (1.27) is, generally speaking, gyro- 

tropic. However, It can be shown that upon transforming to Equation (3.2), 

the first approximation coincides with the zeroth, and only In Equations 

(3.3) does non-gyrotropy make Its appearance. 

In the general case of a gyrotropic medium, the operator 0 in the first 

approximation has the form 
+W--_COh~!G + QhWLpT& (3.12) 

and correspondingly, for a non-gyrotropic medium in the second approximation 

(a, - a/a* 1 @alLB = c*hal+? + &pPB~X&& + CB’ml?d*2 (3.13) ’ 

For an isotropic medium in the general case of strong distribution 

where X and v are even analytic functions of k and UI . The evenness 

with respect to UJ is obvious, and evenness with respect to k follows from 

the fact that there exist no Isotropic tensors of odd order. 



Equations (3.2) may be written in the following form in the (x, t) repre- 

sentation fur the second approximation: 

J:L" - (~0 + p2A) AU - [ho + ~0 + (Xs + it2lAl grad div u = Q (3. i5) 

Here the quantity 

J=p - p2’A - (h,’ + p2’) graddiv (3.1G;) 

as ihe operator giving the effective inertia of the medium. Equation (3.15) 

agrees with the corresponding equation of [7]. In the static case, (3.15) 

coincides with the equation of equilibrium for a medium of simple structure 

and, therefore, the static Green's tensor, as given, e.g. In Cl], may be used 

for Its solution. 

The authors are grateful to G-1. Barenblatt, A.I. Lur'e, V-A. Pal'mov, 

Iu.N. Rabotnov and L.I. Sedov for helpful discussions. 
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